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High-resolution simulation of inviscid flow in general domains
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SUMMARY

In this paper, a high-resolution finite volume method for calculating solutions to a hyperbolic con-
servation law is presented. The method works in two space dimensions on general domains and uses
curvilinear meshes. A non-trivial estimation of gradients needed for the reconstructions is presented.
The paper contains examples of numerical solutions of the Euler gas dynamics equations. Copyright ©
2005 John Wiley & Sons, Ltd.
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INTRODUCTION

Inviscid flows are modelled by hyperbolic conservation laws. In numerical computations,
‘conservation’ is simulated in computational cells; this is the concept of finite volume (FV)
schemes. FV-schemes approximate local averages in these cells, and these averages are de-
termined cell wise by the flux balance across the cell boundaries. To achieve a reasonable
accuracy of the solution, some reconstruction of the unknown profile of the flux in each cell
is needed. In Reference [1], Marquina presented a hyperbolic ansatz for the reconstruction,
which is extended to work on domains of general shapes in two space dimensions. These gen-
eral domains yield non-Cartesian, quadrilateral meshes, so the method presented here handles
these cases.
The ansatz for the reconstruction of fluxes reads

b d
)= 1
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where (xo, yo) is the cell centre and the remaining five parameters are determined such that
the cell average a is preserved, and certain directional derivatives along all four edges are
prescribed (see Reference [2]). Thus, gradients need to be determined from the known cell
averages. This is established as follows.

NUMERICAL GRADIENTS

Based on discrete data f(p;) available in the centre p; € C; C R? of quadrilateral cells, the
goal is to determine the gradient Vf(p) on a given boundary point p € 9C;. By a linear
combination of data from neighbouring cells

S wf(pi) = fi(P) + O(A?) (2)

the x-derivative is approximated up to second order, for example. Here, A is the size of a
cell side. To eliminate the leading order term in the expansion

S y)=f(p)+ f(P)x —X) + [,(P)y — F)
3 e PYx = 2 + fo(P)x = E)(y — )
T3 /5(PYY = Y + Ol p - pIIP)
clearly, the coefficients have to sum up to zero

ZH:‘:O (3)

Moreover, to approximate f,(p) and to eliminate the remaining four error terms the conditions
are

first order: > (i —x)=1, > w(yi—y)=0

4
second order: 3" pu(x; —X)* =3 px — XN yi — 7)) =S pu(yi — ) =0 @
In the present work, these six order conditions are satisfied using a six-point stencil as shown
in Figure 1. Given the mesh, the coefficients y; are numerically computed from the linear
system Au = b representing the order conditions (3) and (4) and stored during the rest of
the computation.

There is some freedom in choosing the six-point stencil; however, one has to make sure
that A is regular throughout the mesh. In the Cartesian case, the stencil selected above leads
to a regular system for p with unique solution u = (0,—1/2h,1/2h,1/2h,—1/2h,0)" for all
positive step sizes 4. Formula (2) reduces to an average of two central differences in this
case. This argument shows also that for moderately non-Cartesian meshes, formula (2) is still
uniquely determined.

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:1061-1067
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Figure 1. Chosen stencil.

HYPERBOLIC RECONSTRUCTION A LA MARQUINA

Given averages of an unknown function f

1 Xj+1/2

y=40 | SO

Xj—1/2

on an equidistant mesh in one space dimension, the following three conditions

Vi — Uj_
dj—ip= ]T;l =r'(xj-12) (5)
1 e
U=A5 /. " r(&)d¢ (6)
.
UA — UA
djp1p= % = r'(x74172) (7

define a third-order accurate reconstruction » within the actual cell C; = [x;_15,X;112) such
that
(&) = f(O)] = 0(Ax®), (eC;
See Reference [2] or [3].
Marquina [1] established a hyperbolic reconstruction based on this principle
b,

M — a: - J
! (x)_a'/+x—xj+cj

(8)

Whenever the given data are monotonic (d;;12d;—12 > 0), there is a unique (monotonic)
hyperbola satisfying (5)—(7). Otherwise, in transition cells, the lateral derivative with largest
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absolute value is replaced by the other one multiplied by Ax?. In this way, the order of
accuracy drops to two in transition cells.

This local hyperbolic reconstruction is quite successful in 1D, see References [1,3—5]. Here,
we present an extension to 2D in the following way.

Consider a generic cell with central point py, see Figure 1. Imagine a local co-ordinate
system such that the corners of the cell appear in different quadrants. In this situation, the
unknown quantity is reconstructed by the bi-hyperbolic ansatz (1) along the local co-ordinate
system. For simplicity, we perform two 1D-reconstructions in x- and y-direction, respectively.
Partial derivatives in the boundary points p on all four edges are approximated as described
in the previous section. Then it is straightforward to apply Marquina’s 1D algorithm in both
co-ordinate directions. The result is a bi-hyperbolic reconstruction (1), which is third-order
accurate along both co-ordinate directions. Note, however, that third-order accuracy cannot be
expected throughout the whole generic non-Cartesian cell. This is due to the following reason:
the 1D-reconstructions preserve the 1D-averages along both co-ordinate axes. Therefore, the
given average within the 2D computational cell equals the average of reconstruction (1) within
the dotted rectangle in Figure 1, which differs from the cell average of (1). In rectangular
cells of course, this effect is irrelevant and full third order is achieved. Otherwise, the average
could be fixed by adjusting the constant a in (1). The integration is tedious, however, and
numerical results do not justify the effort.

FLUX BALANCING AND TIME INTEGRATION

The dynamics of the flow is governed by the flux balance along the boundary of computational
cells C; c Q C R?,

g/ U(t,z)dz—l—/ F(U(t,z)) -ndS =0
dt Je, ac;

Here, z = (x,y) € R? and n denotes the outward normal along the boundary 0C;.

In a numerical simulation on quadrilateral cells, the normal flux F(U) - n needs to be
integrated along all four edges of each cell. To determine the flux on the interface, we apply
a flux splitting formula, which in the case of the Euler equations is van Leer’s splitting [6].
The partial fluxes F* are reconstructed according to the previous section, and the normal flux
F(U) -n is integrated along the edge using a standard quadrature rule. Finally, to advance
the solution in time, the flux balance is integrated using the third order non-linear SSP-RK
scheme in Reference [7], Section 4.1.

NUMERICAL RESULTS

Shock—bubble interaction

Initially investigated experimentally by Haas and Sturtevant [8], the shock—bubble experiment,
where a shock wave in air impinges on a bubble of helium has drawn the attention for
numerical tests (Figure 2). The gases are assumed to be perfect and governed by Euler’s
equations for a 2D, compressible gas flow. To describe the two different components of
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Figure 2. Initial configuration for the shock-bubble experiment.
Table I. Mean velocities for the shock—bubble experiment.

Vs Ve 4 %) Vi Vai Vi

Bi-hyp scheme 414 936 374 181 118 143 230

Marquina and Mulet 414 943 373 176 111 153 229
Percentage error 0 0.8 -0.3 -2.8 -5.9 7.0 —-0.4

Haas and Sturtevant 410 900 393 170 113 145 230

Percentage error —-1.0 -39 5.1 —6.1 —4.2 1.4 0

gas, the system is augmented with a fifth conserved variable, here the mass-fraction ¢. The
complete model is described in detail in Reference [9]:

U +FU)+GU), =0, U= (p,pu,pv,E,pp)"
F(U) = (pu, pu? + P, puv, (E + Pu, ppu)',  G(U) = (pv, puv, pv* + P,(E + P)v, ppv)"
The ratio of specific heats of the mixture of gases is

Cpidp+Cpr(1 —¢)
Cvi¢p + Cuy(1 — ¢)

and the equation of state reads P = (y(¢) — 1)(E — p(u? + v?)/2.

Given this formulation in conservation form, finite volume methods as described above are
applicable provided a splitting of the flux (F, G)T is available. Like in Reference [9] we apply
Marquina’s splitting from Reference [10]. The bi-hyperbolic reconstruction resolves the flow
quite well. In Table I we display the velocities for certain flow features such as the speed of
the shock waves (V;: incident shock, V;: refracted shock, V;; transmitted shock), the interface
of the bubble (V,, Vg: upstream resp. downstream border of the bubble) and the air jet
head (V). Notations are taken from Reference [9], where more details can be found.

The results are well within the estimated error bounds of 10% for the experiment [8] and we
note the close agreement with the numerical results from Marquina and Mulet [9], although
their results are obtained from a fifth-order WENO scheme on a grid of 8000 x 800 points
compared to our third-order method on 3000 %300 points. Still, the bi-hyperbolic reconstruction
prescribes enough numerical viscosity to avoid pressure fluctuations at the interfaces between
the regions of different gases, a well-known problem for conservative schemes.

P) =
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Figure 3. Density contours at ¢ = 0.26 s with and without reconstruction.
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Figure 4. Density contours at ¢ = 0.45 s with and without reconstruction.

Triangular obstacle

A strong air shock wave travels against a reflective triangular obstacle; see Figures 3 and 4.
Due to the geometry of the domain, it is suitable to use non-Cartesian cells around the
triangle. Simulations both with and without reconstructions are compared, and one sees a
clear improvement in the resolution for the simulation using bi-hyperbolic reconstruction.
Both simulations have been performed on parallel computers using 130000 grid cells.
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